#	Title	Keyword	
Methods, techniques			
1	Delineating urban functional areas with building-level social media data: A dynamic time warping (DTW) distance-based <u>k-medoids method</u>	Time-series data analysis, similarity measures, DTW	
2	Mining event periodicity from incomplete observations	Time-series data analysis, autocorrelation, Fourier transform,	
3	Modeling Temporal-Spatial Correlations for Crime Prediction	Time-series, Spatial data, spatial autocorrelation, temporal autocorrelation, spatial weights	
4	Analyzing and predicting the spatial penetration of Airbnb in U.S. cities	Spatial data analysis, spatial auto-correlation	
5	Measuring Ambient Population from Location-Based Social Networks to Describe Urban Crime	Spatial data analysis, Spatial lag model, spatial weights	
6	Use and validation of location-based services in urban research: An example with Dutch restaurants	Spatial data analysis	
7	Incorporating spatial autocorrelation and settlement type segregation to improve the performance of an urban growth model	Spatial data analysis, spatial auto-correlation	
8	Segmenting human trajectory data by movement states while addressing signal loss and signal noise	Spatio-temporal data analysis, Trajectory segmentation	
9	Cooperative Parallel Particle Filters for online model selection and applications to Urban Mobility	Spatio-temporal data analysis, Particle filters, state-space models	
10	A trajectory clustering method based on Douglas-Peucker compression and T density for marine traffic pattern	Spatio-temporal data analysis, trajectory clustering, trajectory	

	recognition	segmentation, Dougls-Peuker
11	<u>Understanding the tourist mobility using GPS: Where is the</u> <u>next place?</u>	Spatio-temporal data analysis, trajectory clustering
12	<u>Fused Matrix Factorization with Geographical and Social</u> <u>Influence in Location-Based Social Networks</u>	Machine learning for spatio-tempora data, Matrix factorizaiton, LBSN
13	GeoMF: Joint Geographical Modeling and Matrix Factorization	Machine learning for spatio-temporal data, Matrix factorization, LBSN
14	Discovering Fine-Grained Spatial Pattern From Taxi Trips: Where Point Process Meets Matrix Decomposition and Factorization	Machine learning for spatio-temporal data, Matrix factorization, LBSN, spatial data analysis, point processes
15	<u>GeoSoCa: Exploiting geographical, social and categorical</u> <u>correlations for point-of-interest recommendations</u>	Machine learning for spatio-temporal data, LBS
16	<u>CityTransfer: Transferring Inter- and Intra-City Knowledge</u> <u>for Chain Store Site Recommendation based on</u> <u>Multi-Source Urban Data</u>	Machine learning for spatio-temporal data, transfer learning, neural networks
17	Data-Driven Travel Time Prediction from Latent Structures using Multiple Data Sources	Machine learning, fusing data sources, matrix factorization
18	Regions, Periods, Activities: Uncovering Urban Dynamics via Cross-Modal Representation Learning	Machine learning, neural networks, representation learning
19	Region Representation Learning via Mobility Flow	Machine learning, neural networks, representation learning
20	Learning Embeddings of Intersections on Road Networks	Machine learning, neural networks, representation learning
21	Revisiting Spatial-Temporal Similarity: A Deep Learning Framework for Traffic Prediction	Machine learning, neural networks

22	Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction	Machine learning, neural networks		
Urban analytics, new societal applications, new data sources				
23	Transfer Learning from Deep Features for Remote Sensing and Poverty Mapping	Poverty maps, remote sensing data, open data		
24	An Intelligent Tree Planning Approach Using Location-based Social Networks Data	Network analysis, LBSNs, Foursquare		
25	<u>Understanding the Effects of the Neighbourhood Built</u> <u>Environment on Public Health with Open Data</u>	Public Health with Open Data		
26	ADAPT-Pricing: A Dynamic And Predictive Technique for Pricing to Maximize Revenue in Ridesharing Platforms	Optimization application on new york taxi data		
27	The dark side of the Earth: benchmarking lighting access for all cities on Earth and the CityNet dataset (Integrating open-source remote-sensing data products on the urban environment	Remote sensing data, open data		
28	Predicting Traffic Accidents Through Heterogeneous Urban Data: A Case Study	Multiple data sources, open data		
29	Detecting Urban Anomalies Using Multiple Spatio-Temporal Data Sources	Multiple data sources, open data		
30	Cultural investment and urban socio-economic development: a geosocial network approach	Foursquare LBSN + open data		
31	Predicting the Spatio-Temporal Evolution of Chronic Diseases in Population with Human Mobility Data	Foursquare LBSN + open data		

Additionally, you can select accepted papers from previously accepted papers of Urban Computing workshops <u>http://urban.cs.wpi.edu/urbcomp2019/pass.html</u> and bid for them